
' Y I. INTRODUCTION 

HE theory of three-body scattering in its general T case has obvious applications to ionic and chemi- 
cal reactions; in spite of well-known difficulties it 
may even be possible to compute the rate constants 
for such simple cases as three-body electron attach- 
ment to hydrogen atoms. Such calculations can be 
approached via the standard method of collision 
cross sections, or alternatively, by means of an ap- 
propriate representation of the scattering operator.' 
Investigations of some aspects of three-body col- 
lisions have been carried out by Delves' and by 
Gallina and  coworker^.^ The latter have obtained 
the Green's function for three-particle scattering in 
three-dimensional space, but for X waves only. 

Recent developments in the theory of generalized 
angular momentum reprqentations' * 5  are admirably 
suited to the treatment of three-particle collisions. 
For the present we shall restrict our investigation 
to motion in a plane, emphasizing developments 
which can be utilized in the extension of our treat- 
ment of the problem to three dimensions. 

Smith's formali~m"~ for treating three-body 
collisions is expressed in terms of a generalized angu- 
lar momentum operator A, components of which 
are given by 

where m labels the order in which the particles are 
paired, e.g., 1 to 2, and 3 to the 1-2 pair, k and 1 
are particle indices, and i and j denote the Cartesian 
components of the appropriate position (momentum) 
vectors. The symbols ,,,Ei and ,,,xi represent the 
"normalized" position and momentum of the ith 
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and jth particle pairs in the center of mass system 
with coupling order m: 

m f' = d - y X m + 2  m - X m + l ) ,  

&' = dm[xm - (mm+l + mm+J-' 

x (mm+lXrn+l + mm+2~m+')I, 

in which 

p2 = mlm2m3/M (reduced mass) , 
A4 = m, + m2 + m3, 

d: = ( m k / d ( l  - mk/M). (3) 
In this representation the center-of-mass position 
X and momentum P are given by 

From the variables (2)) one can form several inde- 
pendmt dynamical variables related to angular mo- 
mentum of which 

A' = 3 I A ~ ~ I ' ,  (5%) 

2 ,  = c A:?, (5b) 

L, = Ai:, (54 

L, = A;:, (54 
L = Ll + L', (54 

Y = L, - L,, (5f) 
are the most important; they become operators 
upon making the appropriate quantum-mechanical 
replacements, eg., ,,,T: -+ iF, (a/a,[:). Since the 
motion in the center-of-mass systcm embodies four 
degrees of freedom, a full description of the assembly 

i i k Z  
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of particles must contain four and only four inde- 
pendent dynamical variables (exclusive of those 
associated with internal strucbure), one of which is 
conveniently baken as the kinetic energy K .  Three 
useful choices of the other three are (A) A', L and 
Z,, (B) A', L and Y ,  and equivalently (C) A', Ll 
and L,. With the aid of raising and lowering operators 
for the appropriate dynamical variables, Smith5 has 
constructed specific representations of the unitary 
transformations connecting representations (A) and 
(B); representations (B) and (C) differ only by a 
phase factor. The elements of the transformation are 
identical with the b coefficients contained in expres- 
sions (29) and (30) of reference 5 .  Representation 
(A) has been appropriately termed symmetric be- 
cause all three particles are treated on a completely 
equal footing. On the other hand, representations 
(B) and (C) depend upon the order in which the 
particles are paired; hence they are not treated on 
an equal basis and we call them asymmetric. This 
can also be stated in terms of transformation proper- 
ties under a change in the pairing order; this in- 
volves an orthogonal transformation of the ('s and 
ds ,  called by Smith a kinematic rotation. Repre- 
sentation (A) is invariant under such a transforma- 
tion while (B) and (C) are not. 

One can attach the following physical significance 
to the dynamical variables L, L,, I,,, A', and 2,. 
That of L, L,, and L, is immediately apparent: they 
are respectively the total ordinary angular momen- 
tum, the ordinary angular momentum of particles 
1 and 2 about their center of mass, and the ordinary 
angular momentum of particle 3 about the center 
of mass of particles 1 and 2. Actually we should 
add a prefix to L,  and L, to denote the order of 
pairing of the particles, e.g., ,L1. Smith4 has related 
(classically) A' to the kinetic energy K in the center- 
of-mass system and a three-body "impact parameter" 
R by the equation 

A2 = 2pKR2, (6) 
where R is defined as the minimum value of p = [xi, ( , $ : ) ' ] I "  on a straight-line trajectory. Hence 
A2 is a measure of the tendency of the three particles 
to  simultaneously pass through a given region. We 
now raise the question, how closely for a given value 
of R does the system approach the situation in 
which the particles are equidistant a t  the instant 
of time when p = R? In  other words, when would 
Jx' - x'/ = Ix2 - x3[ = Ix3 - x'l? This question 
can best be answered if we first go to the one- 
dimensional case in which 2 ,  and I( are the only 

closely when Z f  is a minimum and coincide a t  some 
instant of time if Z, = 0. This interpretation of Z, 
can be readily carried over to the planar case; for 
a given value of A2 the particles approach a three- 
body collision most closely for 2,  = 0 and progres- 
sively less closely as Z, increases. Obviously, if 
A2 = 0, we must have 2 ,  = 0. 

As Smith has demonstrated, the classical argu- 
ment can readily be carried over into the quantum 
domain. When the eigenvalue of the square of the 
generalized angular momentum A2 vanishes the 
particles are coincident a t  some instant of time and 
the eigenvalue of Z,, u, must also vanish; this is 
indeed a consequence of the properties of A. One 
can, of course, also characterize the "three-body 
closeness of approach" by A', L,, and L,, but this 
description suffers from its asymmetry. It is ap- 
parent from the foregoing that for a short-range 
interaction potential, the three particles will have 
the greatest probability of undergoing a true "three- 
body" collision when the quantum numbers A and u 
(which partially characterize the system) are small. 

Although the most appropriate representation for 
treating 3-body scattering is the symmetric one with 
wavefunctions denoted5 by (KALZ, I p ,O, ,@, cp), 
the coordinates p, ,O, ,@, and cp are related to 
the "normalized" center-of-mass system Cartesian 
coordinates ,$:, (: by intractable bilinear forms. 
Instead we shall employ the asymmetric representa- 
tion with wavefunctions (KilLY 1 px4+4- ) ,  or rather 
its equivalent (KAL,L, I px+,&), returning to the 
set ( K ,  A, LZ,) later. The transformation equations 
connecting ( E ' ,  E') and ( p ,  x, d,, &) are 

(7) F :  = p cos x cos 41 , 
ET = p sin x cos 4,, 

= p cos x sin dl , 
t; = p sin x sin 4,) 

in which p2 = x,,i=l (4;) ' .  
The Schrodinger equation describing the motion 

of the three particles can be written in terms of the 
variables f ,  and r2 or alternatively in terms of the 
coordinates ( p ,  x, c$,, 4,). The former set yields plane- 
wave solutions 

(-If) = [1/(27dZI exp G--t), (8) 

in which we have chosen our units such that h = 1 
and the normalization is one particle per unit volume. 
The scalar product = x'sf' + z ' - < ~  can be 
expressed in terms of the angular coordinates as 
follows: 

. x . f  = kp[cos x cos % cos (41 - 8,) 
dynamical variables. The parti in x sin 2 cos (42 - &I,  (9) 
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where k = ('XI and p = \<I; the barred angles fix 
the direction of 'X and the unbarred angles that of E .  
One carinot perform a coordinate rotation to  a 
system in which x = 0 or 3 = 0;  hence all angles 
must be retained in the computations. 

If we are dealing with a "central" potential, i.e., 
one in which V is a function of only, or one 
which is "almost" central, the coordinate systems 
( ~ ~ 4 ~ 4 , )  or PO+@) are appropriate. The solutions 

the range of the potential are5 
"f &e correspoil&ilg Sc~iru&ngei. eq-ustioils o-uisl& 

(KALlLZ IpX@1&) = ( l / k p ) J A + l ( ~ p ) $ A m , m , ( x ~ l ~ Z )  7 (loa) 
1 ( K A L ~ I  I&@) = (l/kp>JA+l(kp>gAm+,(~+@) 9 (lob) 

where J A + l ( k p )  is the Bessel function of the first 
kind of order A + 1, k is the magnitude of the 
momentum (k2 = 2pK), and 

A2$Am,m, = X(X 2)3Am,m,, (11a) 

(1 1b) 

A'gXrn+u = X(X 2)gAm+u, (11c) 

LgAm+e = m+Am+,, (1 Id) 

219Arn+u = u g A m + a *  (1 1 e> 

Li ,z$hmlml = ntl .?$Am,m, 2 

3Amlms(xd '1$2)  and ~ A ~ + ~ ( O + @ )  are given by 

$Am,m2(X+1C#2) = { [2(A + ~)]'/2~)~""'"t'' e i m ' ( Q ' - t * )  

X 

X 

X 

X 

X 

X 

The functions at7 appearing in (12b) are the ele- 
ments of the Wigner representation of the three- 
dimensional rotation group.' 

In  the following section we shall compute the free- 
particle Green's function, after which the elastic and 
inelastic three-particle scattering amplitude and 
collision cross section will be treated. In  the final 
section we shall extend our development to the case 
of identical particles. 

2. FREE-PARTICLE GREEN'S FUNCTION 

In  developing the dynamics of a three-body col- 
iision it is convenient to employ the integral ,equation 
methods of Lippmann and S ~ h w i n g e r . ~ * * * ~  I n  this 
scheme the state vector 10) of the system is related 
to the incoming state vector ii) by the equation 

(13) 

where V is the interaction potential and G(+)(En) 
is the free-particle Green's function given in opera- 
tor form by 

10) = li) + G(+'(Eo) V IO), 

G(+)(Eo) = lim (E, - K + id-'. (14) 
e-+O 

In Eq. (14) K is the free-particle Hamiltonian opera- 
tor and E is an adiabatic switching parameter intro- 
duced in order to  avoid transients in the time 
dependence of the state function during the scatter- 
ing process; i t  has the significance of feeding in the 
incident wave over a period of time rather than re- 
leasing it suddenly.' The positive sign adjacent to  
e in (14) ensures outgoing scatteredwaves. In  position 
coordinate representation we have 

(TlO) = (Eli) + s GE)(E, t')V(E')(t'IO) dT', (15) 

where 

using the linear momentum representation of the 
opcrcttor GF); thc syrr,bc! i; rcprcscnts thc reduced 
mass and the integral is taken over all momentum 
space x .  The scalar products .x.T are now expressed 
in terms of the hyperpolar coordinates (x, +,, +,) 
as in Eq. (9). After carrying out the integration ovcr 
the azimuthal angles +,, +,, we obtain 

X f sin 2% dxk3 dlc, (17) 

B E .  P. Wigner, Group I'lieory and its Application to the 
Quantum Mechanics of Atomic Spectra (Academic Press Inc., 
New York, 1959). _ _ _  \----,. 
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where 

r1 = [t’ cos2 ji + t” cosz I? 
- at,$’ cos 2 cos j i  cos - &)]1, 

- 2[‘$’sin 2 sin g cos (& - ;2)]?, 

r, = [tz sin’ 2 + [” sin’ 2 

and the directions of ( and E’ are specified by the 
sets of angles (24&) and (&&, respectively. 

Using a theorem due to Sonine,’” one can im- 
mediately integrate over x, obtaining the result 

in which r = (r: + r;)’. The integral in (18) which 
we shall call I can be evaluated by constructing a 
contour of integration in the complex plane such 
that outgoing waves are guaranteed. To do this, 
one first expresses J,(kr) as a sum of Hankel func- 
tions of the first and second kinds; 

thus recasting the integral I in the form 

The first integral I, in (20) is evaluated by means of 
Cauchy’s integral formula and the appropriate con- 
tour of integration shown in Fig. l(a). 

im 

FIG. 1. Contours of integration for integrals I 1  and 1 2  
[Eq. (20)l. 

or, asymptotically for large E,  

CY = cos x cos x‘ cos (41 - 49 

+ sin x sin x’ cos (4’ - 4;) .  (24) 

In  addition to expressing Eq. (15) in the linear 
momentum representation we can also cast it in 
terms of generalized angular momentum eigen- 
functions 

and 

= 2lnRes (ko) .  (21) G i T ) ( t ,  t’) = (tlIcAm+u) 
Xm+c 

The second integral in (21)  vanishes because Hi1) (2) 
approaches zero in the limit IZI approaches infinity. 

the second integral I z  in (20) is computed in a similar 

X (KXm+u [GLT) I KXm+u)(KXm+olf’) 

Using the contour of integration shown in Fig. l(b), = r p i  g A m + u ( b g f m + u ( f ‘ )  
Xm+u 

manner. Substituting the solutions of I ,  and I ,  into 

lo G. N. Watson, A Treatise on the Theory of Bessel Func- 
lions (Cambridge University Press, London, 1952), 2nd Ed., 
p. 376. 

It is interesting to note that the G ~ ~ ~ ~ Y ~  function 
of N free particles moving in a plane can be derived 
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with the aid of a suitable generalization of the above scattering amplitude in the generalized angular 
method. The asymptotic form momentum representations (h’L1772,) or (Xm+a) rather 

than as an explicit function of the coordinates 
(yd,d2) or (@+@). The transformation coefficients G : + ’ ( t ,  t’1.v 
are just the generalized angular momentum eigen- 

exp (zk It - <’I) (27) functions ( 2 7 p  It - f ’ l v - g  

Ilk’- s’2 
e-,(t+!v)* 

- - 

is derived in Appendix A. The vectors t and z are !(x+I+~; x’+;+;) 
generalizations of Eq. (2) to N bodies: r t t  C ~ X * m , m l ( X + l + ~ ) ~ ~ , ) m , ~ . m . m . ~ g ~ ~ m , ~ m . ~ ( X  + 1 + ~ ,  

(31) 
Amxma 

A ’ m l ‘ m 9 ’  
Y-1 

t =  E t ’ ,  
f(@+@; @’+’a’) I-1 

N - l  

x = Ex’. = gx*m+o(@+@)f”m”:,+, ,gcfgA’m+’,v(@’+’@’). (32) 
, - I  Am+r 

A’m’o’  
3. THREE-PARTICLE ELASTIC SCATTERING 

Inverting the expansions (31) and (32) and employ- 
ing (30), we obtain, for f2;m,,;m,m,, and fAA’ m+m+’ ; w o  ’ 7 

Having derived the Green’s function we are now 
in a position to investigate three-particle scattering 
dynamics. A A *  JA+~(&’) 

f m l m x ~ : m , m l ‘  (2r)+ ( -11~ / g 3x*m,m. Asymptotically the wavefunction of the system 

amplitude is easily transformed from one gener- 
The a! has Same significance a’ in (24) alized angular momentum representation to the other 

and and +,, represent the directions of the in- by of the unitary 
coming and scattered three-particle momenta, re- - 

,XX ’  speciiveiy. Aiternativeiy, the scattering ampiitude ~ ~ + ~ + , ~ ~ t  = c him- , aj 
can be expanded, with the aid of (29, in a series 
of generalized angular momentum eigenfunctions X fm+m+,;m-m-,bx,(ml., u’). (35) 

A variational method for computirig the scatter;ig 
f ( f * ,  amplitude corresponding to the two-particle collision 

process has been developed by Schwinger.” This 
procedure can be suitably adapted to the three- 
particle case by expressing the scattering amplitude 
as 

m-m-’ 

AX’  
I 

= (2n)i !! k Xm*m. c (-1)’$Amxm9(e4) 

X 1 $:m,m,(~)V(~I)*.,(5’) d t ’ .  (30) 

For many purposes it is more useful to express the 

where H = It - 1’1 and L’(Q = pV( t ) .  Variation of 
f with respect to $* then yields Eq. (29). The utility 

and therefore presumably give a best fit to it. I n  
practice this is carried out by writing the wave- 
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function of the system as a function of various 
parameters, e .g . , 

1L = c ff,4,. (37) 

Variation of f with respect to the expansion param- 
eters a, results in the set of simultaneous equations 

af/aa. = 0, (38) 
which are then solved for a,. This procedure, of 
course, yields only an upper or lower bound to the 
magnitude of the scattering amplitude depending 
upon whether the potential is repulsive or attractive; 
the “goodness” of the approximation depends upon 
an  adroit choice of the basis (4,). It is hoped that 
this approach can be exploited in the eventual treat- 
ment of actual three-body problems. 

In  two-particle scattering, the differential scatter- 
ing cross section u(0, ‘p) is related to  the scattering 
amplitude by the equality 

u(@, ‘p) = ‘p)I2, (39) 
where (e, p) fix the orientation of the outgoing with 
respect to the incoming momentum. Derivation of 
the three-particle analogue of (39) can be ap- 
proached in two ways which, of course, must yield 
the same result. The first one is based on the ele- 
mentary definition of cross section 

u(n0, d = ~ l ~ o u t l / l ~ ~ n l l ~ 3  d ~ ,  (40) 
where j,, and j,,, are the probability current densi- 
ties of the incoming and outgoing particles, respec- 
tively, and t3 dQ is an element of “surface area” of 
a large hypersphere the center of which is coincident 
with the center of scattering. The probability cur- 
rent densities are given by 

j,,, = (1/2id[+%V1Lac - (VJ.3+scl ,  

j,, = (1/2i~)[4?V4, - (V434,1, 

(414 

(4W 
where J... and 4, are the scattered and incident wave- 
functions, respectively and p is the reduced mass. 
The normalized wavefunctions 4l and J.., are 

+I(<) = [1/(2d21 exp (iz-t)) ,  (424 

#J<) = (,;/~j)e-’*’4e‘k‘f(??o, ??,) , (42b) 
from which we obtain, with the aid of (41) and (40), 

U(ZO,%) = k I M o ,  %)IZ. (43) 
The cross section u has the dimensions of length 
cubed since f(i?o, e,) can be shown to have dimen- 
sions of length squared. 

We make the second approach via the appropriate 
matrix element of the transition rate amplitude 

R X o ,  Xi corresponding to  the collision process 

where Vo is the velocity of the incoming particles 
given by Vo = k / p ,  and p(E) is the number of final 
states per unit energy: 

The matrix element in question is (0 IVI i) which 
can be recast in the more useful form’ 

R m o ,  Xi = lim -ie(?eoI.xi), (46) 
*-+O 

or, explicitly in terms of (42), 

R z o , s i  = lim t -+O (-is lm s,’* lr Lr exp (-inot;) 

(47) 
in which the factor is introduced because of 
the requirement that we replace the energy E by 
E + ie when we move into the first quadrant of the 
complex plane. The term containing exp [ i ( x i  -z0) - E ]  
contributes a delta function which is of no interest 
since it indicates no scattering. In  order to carry 
out the second integration, one must expand the 
plane wave (momentum eigenfunction) exp ( -izO.t) 
in a series of generalized angular momentum eigen- 
functions (see Appendix B). Making this sub- 
stitution in (39), and changing the lower limit of 
the 5 integration to some large but finite value T ,  

we obtain 

e-- .pE/k - i * / 4  e $Arn, ,,(x”& ‘4;’) 

X t3 d[ sin x’ cos x’ dx’ d44;. 
X $h*m,m,(x’4:4;>f(x4lsz; ~’4142) 

(48) 
The artifice of assuming a large finite value for the 
lower limit of the integral over t; is quite legitimate; 
the integral Jy can be split into a sum J: + J; 
wherein the second integral $: is finite and there- 
fore yields no contribution to R z o ,  Xi in the limit E 

approaches +O.  Since the value of is large in the 
region of integration, the Bessel function JX+l (kt) 
can be replaced by its asymptotic form. With t,he 
aid of (31) we obtain 

(49) R XI), . x i  = [(2~)~/P1f@o1 +;I. 
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Finally one again arrives a t  the relation between the 
scattering amplitude and cross section when the 
form of R x o ,  %, given by (49) is substituted into (44). 

aGo.xJ = I M O ,  & ) I 2 ,  (43) 

wherein j(c0, 73,)  can be represented in ( x + ~ + ~ ) ,  
(x+-++) or in (,e, cp) coordinates. 

4. PARTIAL-WAVE ANALYSIS 

One of the most useful methods of analyzing low- 
energy two-body scattering is the expansion of the 
scattering amplitude in “partial waves” each of 
which is associated with a definite orbital angular 
momentum. The simplest case is that of a “central” 
short-range potential, i.e., V = V(l(1). Although of 
very great importance in two-particle scattering, 
this appears a t  first glance to  be a very unphysical 
interaction when one extends it to the three-particle 
case. Nevertheless, consideration of the connection 
between (11 and the moment of inertia of the three 
particles about an axis through the center of mass 
and perpendicular to the plane of the particles, Le., 
I = pt2  where p is the reduced mass and I is the 
moment of inertia, shows that it is reasonable, a t  
least to first approximation. If the particles must 
simultaneously be within a certain distance of each 
other for the potential to  act, the moment of inertia 
I must be less than some value Io.  A “square well” 
potential would then have the form 

VlEl> = Vo; @ O / d  < t: 
= 0 ( I o / P )  > ti. (50) 

If (50) does represent the interaction potential, 
the solution to the wave equation can be separated 
into radial and angular parts; the general solution 
is of the foi?ii 

where RA(kt) approaches 

(l/kt)’sin [k t  - + 1 ) ~  + 71x1 

asymptotically; the are the three-body A-dependent 
scattering phase shifts. Now the wavefunction of the 
system, *x.(l),  can also be expressed as a function 
of the scattering amplitude (28). In  addition, the 
asymptotic form of (51) can be separated into a 
part containing the common factor e“: and another 
part containing the common factor e - i k E :  After the 

expansion of +i (1) in generalized angular momentum 
eigenfunctions (see Appendix B), we can equate the 
coefficients of e ikE and e - ikE  appearing in the two 
forms of @,,(E) arid solve for Ax,,,,: 

(52) 
A x m x m ,  = ( 2 ~ )  2 (2) . A e i 7 j A  9 

and 

m o ,  73;) 

By comparing (53) with (31) and (33) it becomes 
evident that 

A A A ’  - - f = fm+m+,.uu*. (54) 

More complicated cases involving “noncentral” po- 
tentials will result in more complicated expressions 

which have 
off-diagonal terms and involve phase shifts labeled 
by m, and m2(m+ and a). A general treatment of 
such potential functions, an example of which is 

for fYl’m,r,m2mlr or alternatively fm+m+,.uur, AX’  

V(1)  = VLl(ltl)(l + 4’4% 
8’ + 4 ’ - 1 ’  < (50Y  

= 0;  o2 + at’.t2 > ( t o L  (55) 
will be deferred for a future paper. 

INELASTIC SCATTERING 

Inelastic scattering is possible if one or more of 
the particles has internal structure or two of the 
particles can combine. Typical examples of the latter 
are three-body attachment of electrons to  neutral 
atoms, three-body electron-ion recombination, and 
formation of diatomic molecules by means of three- 
body atomic collisions. The case in which the 
number of free-particles is conserved will be con- 
sidered first. 

If the three particles all have internal structure, 
the free-particle wavefunctions are of the form 

di = [~/(~?~)‘IR,(P)X,(,>T,(~) 

x exp [i(& - 1‘ + z’, - t2)j, (56) 

where R,(p), X,(a), and T,(T) represent the internal 
structures of the particles. The Green’s function 
(14) of the three-body iiiteraction then takes the form 
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If we now make the substitution 

(1/2p)k;”A = E - EA - E ,  - E,, (58) 
and carry out the integrations indicated in (57) using 
the methods of Sec. 2, we obtain 

C ipk,vAK1)(k,vh It - t’I) 

47r It - f’l 
” h  G ; ) ( t p u r ;  t ’p’u’r ’ )  = 

x R, ( P I  8, (.> TA(T)R *, b’> (c’) T*, ( 7’) (59) 
for the Green’s function, and thus, 

+ ( E ,  Pl u, 7) = dt, P, U ,  r )  

+ G,k+)(t, p u r ,  f’p’u’r’)V(t’, ~ ’ u ’ T ’ )  

X +(t’, p ’ ,  url r’) df’  dp’ du‘ dr‘ (60) 

for the wavefunction of the system. As in Eq. (56), 
the wavefunction # ( E ,  p, u, T) is separable and can 
in general be written 

(61) 

which allows the “external” wavefunction to be 
expressed as 

+ ( E ,  P ,  U ,  7) = c +,.X(F;)R,(P)S.(U))X(T), 
W A  

+ p v ~ ( f )  = 4,,,,*,A,,(t) 6p,*, , ,.*, . x x , ,  

X (wA IV(t’> 1 I.1’V’A’)+ri,,,~,x,(~’) dt ’ .  (65) 

If two of the particles, which we shall assume to be 
structureless, are bound together in the h a 1  state, 
we have a situation i i  which I‘xz( is imaginary, or 
equivalently 

x = +7r+&, 

where Q is real. The Green’s function of system then 
takes the form 

k dk &2 
exp (ilc cosh a, It2 - til cos +*) 

kZ - k2 -+ 2ipc 

= [2~/(27r)~1 C 4n(tI)+t(t:)+(ri) 

X HA”(k cash an I t 2  - til), 
n 

(66) 

where dn(tl) are the energy eigenfunctions of the 
bound (12) pair. Because the energy spectrum of 
this pair is discrete, the “angles” a, can assume 
certain allowed values only, which are related to  the 
internal energy of the pair E I z  by the equality 

E;, = -(1/2p)lc2 si&’ a,,. (67) 

In the asymptotic region, G:!* takes the form 

where IC ,  = k cosh a,. Using Eqs. (15) and (68) 
one can immediately write down the wavefunction 
of the system: 

where 

is the three-body scattering amplitude corresponding 
to the rearrangement process. This treatment can 
be readily generalized to the case of particles with 
internal structure. 

Computation of the inelastic cross section in 
terms of the scattering amplitude (65), by the 
methods of Sec. 4, yields 

~ , “ o ,  =“,~(TL’  + n) = (kE/kn,) If(+:, +t,)l’, (71) 
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where k,. represents the momentum of the incident 
particles, and n' and n represent the quantum 
numbers of the internal states of the three incident 
particies before and after scattering, respectiveiy. 

The cross section for scattering into a given exit 
channel can also be expressed in terms of the three- 
particle scattering matrix which connects that exit 
channel with the entrance channel. Normalizing the 
wavefunction of the system to unit 0ux in the 
entrance channel we can write the hyperradial 
part as" 

the angular part as 

F ,  ,(z6162; x$14z) 

= 3x*, fin, ., * m a  *(%$162)$h-,  * r n x  7 ,rns 7 r(x+l&) 

in the (Xrnlm,) representation, and the internal part 
as I ( p ,  U, T), where p, (T, and T are the internal CO- 

ordinates of the three particles. The total flux in 
the outgoing channel is obtained by squaring the 
modulus of the complete wavefunction RFI and 
integrating over the hypersolid angles !3 and the 
internal coordinates of the particles: 

f!GX Gut = IR,,,(() 1' i&t(%&&; X+14z]j2 s 
x I I ( p a 7 )  l 2  C i Q  dQVy,l3 d p  da d7 

= (2T/ii!3 ! a y y t  - s,,.!~, (73) 

where v,, is the hypervelocity of the particles in the 
exit channel y'. Using the definition of cross section 
(40) and the fact that the entrance flux is unity, 
the cross section for exit channel y' can be expressed 
as 

a(y y') = (2a/ii)3 l a y v r  - #,,, i z  (74) 

For the case of scattering by a "central" potential 
(See. 4) the phase shifts qh can be related to the 
diagonal elements of the scattering matrix by the 
familiar relation 

SAX = f p h  (75) 

where q h  is in general a complex quantity, the real 

part of which is associated with elastic scattering 
and the imaginary part with inelastic scattering. 

6. IDENTICAL PARTICLES 

In the foregoing treatment of three-particle scat- 
tering we have considered distinguishable particles 
only. If we are to extend the rase to indistinguishable 
particles (fermions or bosons), the wa,vefunctions 
must be properly symmetrized: 

$ = (6)-* z fa@ 
6 

X exp [z(p'-x' + p2-x2 + p'.x')l), (76) 

where pa and x' are the momentum and position of 
particle a in the laboratory system, 6 is the particle 
permutation operator and t6 is described by 

C p  = 1 bosons, 

t@ = 

- 1 for an odd number of permutations 
+1 for an even number of permutations fermions. 

If we transform to the f - x coordinate system of 
Eq. (7), (73) then takes the form 

$ = exp (zP.X)(6))-*(exp [i(xl.t' + xz-.f2))l 

1 

+ 7 exp [fi(.x'.t' - xx' - f '  

- d 2 x l . f '  - d 3 x 2 . h 1 ) ]  

+ V5.x'*tZ + 4 . x Z 4 3 ]  

+ 7 exp [+i(x'.t' - 7c2-t2 

+ I ]  exp [ i ( -x ' . t '  + xz*.f2)] 

+ exp [$i(-x' .f '  - x2- tz  

3. d5.x'.t2 - d 3 n 2 . i 3 ]  

- d37c1.t2+ di .x ' . t ' ) ] ] ,  (77) 

+ exp [4 i ( -x ' . t '  - 

where P is the momentum and X the position of 
the center of mass of the three particles; q = -1 
for fermions and +1 for bosons. One can now com- 
pute the free-particle Green's function just as in 
See. 3, obtaining 6 terms instead of one: 

1 2  See, for example, J. M. Blatt and V. F. Weisskopf, 
Theoretical Nuclear Physics (John Wiley & Sons, Inc., New 
York, 1952), p. 519. 
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where the ri  are related to E' and tz as follows: 

r: = f z  + tt2 - 2(t1.t" + <'."')), 

= tz + - (f'"'' - tz.<'z 

- .\/i E l .  t1-2 - 4 s  5-2. f ' l )  , 

+ v5 f l . f ' z  - di f"."), 

= a'+ - ( ~ ' . t "  - t2..'z 

= f z  + t f2 - 2(-t1.t" + t'."')), 
= f 2  + t f2 - (-flat" - E'.<'~ 

+ v5 f l - t ' z  - v5 f " ~ " ) ,  

- di f' * y2 + di f" p). 
ri = f z  + - (-tl.tfl - t'.tf2 

Computation of the scattering amplitude for the 
system leads to 

6 

f(2414-2, x414-2) = c T(i)f(i)(2414zl x414-2) 1 (79) 

in which T ( ' )  = +1 f o r i  = 1, 5, and 6; r ] " )  = -1 

, = I  

for i = 2, 3, and 4 in the case of fermions; 17") = 1 
for bosons. The different component scattering 
amplitudes f ' i '  are of the same form as (29) with 
the coefficient a of the product k [  which appears 
in the exponential factor assuming the 
values ai. 

011 = cos x cos 2 cos (41 - $1) 

cy2 = + cos x cos 2 cos (+] - &) 

+ sin x sin 2 cos (+z - &), 

- 3 sin x sin 2 cos (4z - &J 

- +di cos x sin 2 cos (41 - 4~ 
- + dii sin x cos 2 cos (4z - 41), 

a3 = + cos x cos 2 cos (41 - 61) 

- 3 sin x sin 2 cos (4z - &) 

+ 4 di cos x sin 2 cos - $J 
+ id3 sin x cos 2 cos (4z - $J, 

a4 = -cos x cos 2 cos (+1 - &) 

as = - 4  cos x cos 2 cos (c$l - I&) 

- + sin x sin 2 cos (4z - &) 

+ + dii cos x sin 2 cos - 4~ 
- + d 3 s i n  x cos 2 cos (4z - $J,  

+ sin x sin 2 cos (4z - &), 

FIG. 2.  Coupling of N par- 
ticles with the aid of the 
coordinate system given in 
( A l ) ;  a denotes the center of 
mass of particles 1 and 2, 
b that  of particles 1, 2, and 3. ... , n that of particles 1 
to N - 1. 

a0 = -+ cos x cos 2 cos (41 - 41) 

- + sin x sin 2 cos (4z - c&) 

- + .\/i cos x sin 2 cos - $J 

+ + di sin x cos 2 cos (+2 - ql), (80) 
corresponding to the various f';'. The relation be- 
tween the cross section and the scattering amplitude 
(43) can easily be shown to be correct if we define f 
by Eq. (79). 

If only two of the particles are identical, expres- 
sion (80) contains only 2 terms in the right-hand 
member and these are characterized by 

a1 = cos x cos 2 cos (41 - 61) 

a2 = -cos x cos 2 cos (41 - $1) 

+ sin x sin 2 cos (4z - &), 

+ sin x sin 2 cos (c$~ - &), (81) 
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APPENDIX A. N-BODY SCATTERING IN A PLANE 

The free-particle Green's function obtained for 
three bodies in Sec. 3 can easily be generalized to N 
bodies by using a (normalized) coordinate system 
corresponding to the coupling scheme shown in 
Fig. 2. 

The coordinate system is a simple extension of 
Smith's asymmetric one [Eq. (7)]: 

= p cos XN-2 cos xA7-3  . ' . cos XI cos 41 7 

= p cos XN--2 . . . cos x1 sin +1 , 
t: = p COSXN-2 . . . sin x1 cos &, 

f," = p COSXN--2 . . sin x1 sin cp2, 

E ;  = p cos XN--2 ' .  . sin xz cos 43, 

.g = p COSXN--2 . sin xZ sin 

( A 0  
= p sin x N - ~  COS 4 N - ] ,  

g - 1  = p sin xN-? sin c$,,~-~, 
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where 
N - 1  

P2 = c [(5f)2 + (51)", 
j = l  and the wavefunction of the system can then be 

expressed as and 
r ( 5 / 4 - f N )  

0, ei), (A71 kN- 5/Zei kCf(+ 0 I xi  5 by 0 I +i 5 2 ~ .  $(t) a 4 ( 8  + 5N-3 

The N-body plane wavefunctions in the center of 
mass of the assembly are of the form where f(iio, 9J, the scattering amplitude, is written 

and the Green's function is accordingly generalized to 

where 

Introducing the coordinate system ( A l )  and inte- 
grating over the "azimuthal" angles 4i ,  we obtain 

X sin xi cos x 1  . . . sin X N - 2  

X COSpN-5 x N - 2  dxl * * dXN-2kZN-' d k ,  (-44) 

ai = ( l t j 1 2  + I F ; ' i l Z  - 2 t i . p y  
where 

I? 

and xo = 4 ~ .  

mentum is carried out as in Sec. 2 and 
The integration over the magnitude of the mo- 

where 
N - 1  

a = ( a y  = It - < ' I .  
i - 1  

Asymptotically, this takes the form 

f(ii0, ei) = ~ 1 e-ikE'"V(Y)J., i(E') d y ,  (A8)  (27r)N-# 

and 
N - 2  

Q! = sin x i  sin x: cos (4i+l - 
i -0 

Using the N-body analogue of (40), the cross section 
for N particles is related to the scattering smpli- 
tude by 

a(k, k,) = (k2N-4/k0)  [f(iio, +,) 1 2 .  
APPENDIX B. PLANE WAVE EXPANSION 

(A10) 

In  Sec. 3, the expansion of the three-part.icle plane 
wave exp (iz-t) in radial and momentum cQm- 
functions proved to be a useful mathematical d e v i i  

exp (iz-t)  

If one multiplies Eq. (5) by $f,m,.m,t({) &~,,~,,,(+) 
and integrates over all possible directions of 13 and f, 
one obtains, from the orthonormality properties of 
the $s, 
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where B(r, s) is the beta function. It was found by 
inserting various allowed values of A, m,, and m, 
into (B4) that, in each case, CAmlm. was independent 
of m, and m, and equal to (27r)'(i)'. Proof of this 
in the general case has so far eluded the author, 
however. Explicitly, 

( 2 4 ,  c e'"'E = 
A 

x J,,,o c gx*rntrn. ( i ;>g~mlma( i>* ( ~ 5 )  k t  mrm. 

Note added in proof. Since submission of this paper 
for publication, Dr. Edward Gerjuoy has pointed 

r 
- 
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out to the author that many years ago Sommerfeld 
derived the Green's function for a many-dimensional 
space13 by a simpler method than that presented 
here. As applied to many-particle scattering, it in- 
volves a spacial partitioning which k different from 
ours, i.e. Sommerfeld's computation is carried out 
in the space of one of the particles. In spite of its 
more complicated form, the author, however, feels 
that the method of computation presented in the 
foregoing is somewhat preferable for our purposes, 
particularly for the derivation of Eqs. (25) and (26). 

1* E. Gerjuoy, Ann. Phys. 5, 58 (1958); A. Sommerfeld, 
Partial Differential Equations in Physies (Academic Press Inc., 
New York, 1949). 
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